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A new "C-potential" C(R~) for predictions of conformations, relative stabilities of isomers, 
transition states, of a molecule M in solution as a function of its geometry R M is given. The potential 
includes all the solvent effects including the "solvophobic force" given earlier by the writer with param- 
eters fully specified in terms of simple handbook properties of liquids. It is proved that C(R~ can 
be used in statistical mechanical equations for equilibria and for activated complex rates just as though 
it were an ordinary potential energy surface dependent on R M only. 
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1. The Potential Energy Surface in the Gas Phase 

Q u a n t u m  mechan ica l ly  one calculates  the ad iaba t i c  e lectronic  po ten t ia l  
energy surface U(RM) for a set of  a t o m s  {i} = {1, 2 ... n} = M  at  pos i t ions  

R~ = {81, 82 .... 8.}. 
The "ad i aba t i c  chemis t ry"  of  this set of  a toms  in vacuo (in di lute  gas phase)  

is con ta ined  in U(RM). 
This U-surface m a y  have prominent features: minima,  valleys, bar r ie r  tops,  

etc. co r r e spond ing  to  a s table  molecule,  or  to several  molecules  in in terac t ion ,  
to cons t i tu t iona l  or  conf igura t iona l  (conformat ional )  isomers,  ac t iva ted  com- 
plexes (~), etc. 

D e p e n d i n g  on the dep th  (or height)  lUg (R~~ and  width  A R~ of  the a th p romi-  
nent  feature bu t  cons ider ing  also the t empera tu re  T and  the en t ropy  effects [1]  
we may  have a "s ignif icant  s t ructure"  (a molecule,  an  isomer,  a complex,  etc.) 
as H. Eyr ing  calls it, {P~t, R~} on the phase  space {PM, RM} 1. Then for each "a"  
only tha t  po r t i on  of  the phase  space (and of  U-space,  U({R~})) need be cons idered  
leading  to a pa r t i t i on  funct ion [2]  (microcanonical) ,  

(P.f-)a = AMQ~ (1) 
with 

Q~= ~ e-tr({R~l) d'CM (2) 
{R~ 

* Work supported by a grant from the U.S. National Science Foundation. 
1 A large lull >> kT is not sufficient 'for applicability of the "significant structure" (P.f-)a method. 

Entropy effects need be considered; e.g. though H2, IUol/k ~50000 ~ the H2 (gas) is nearly all dis- 
sociated to 2H already at 5000 ~ 
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(dz~ = dz,  d g  2 . . .  dz,), and 
( 2nmik TI3/2 

AM= 2122 ... 2, ; ~,i = ~ ] (3) 

each atom i of M having mass mi z. 
Prediction of conformation, most stable chemical species, etc. is then an 

equilibrium K, (or quasi-equilibrium for rates ocK e) problem; e.g. 

a ~ - - a ~ a ' ;  A # = 0 (4) 
chemical potential 

A i = A ~ + k T  lnxi (5a) 
! 

K =  x_j_~ =e-aa~ (5b) 
x i  

Portions of the U-surface have been mapped 

U({R~}) ~ A~ V) (6) 

via the configurational integral, Q, Eq. (2) into Helmholtz free energies per mole- 
cule, 

A -~ = - k TIn  (p.f.)~. (7) 

What if no prominent features are discernable (relative to k T) on U(RM)? 
Then, if M is a molecule, it is flopping around a good many conformations. If 
M is an assembly of atoms {i} = M, or of molecules made of them, the constituents 
are reacting ("chemical forces") [3], interacting ("physical forces") [3] over the 
entire U(RM) 3. Then the (p.f.) and K~q. method no longer applies. But one can 
still calculate the free energy of the entire atomic assembly [ 1] from the Q-integral 
[4] over all of U(RM) oo 

QM = j" e- v(R~)/kr dzM. (8) 
- - c O  

2. Potential Surface in Solution and Quantum Chemical Calculation 

All of the above is for M by itself, in vacuo. What if the molecule is in solution? 
Predictions of conformation, stability of isomeric forms based on quantum 
chemical calculations of U(RM) will then no longer remain valid. There are large 
"solvophobic forces" [5] when solvent, driving isomerizations, reactions, foldings 
of biopolymers contrary to the tendencies the molecules had in vacuo. 

2 This classical method, even for a stable molecule with some quantum effects is more convenient 
than the usual energy-levels method of (p.f.), = (P-f.)t . . . .  ( P ' f ' ) r o t  (P:f.)~ibr. Only integrations [over portion 
of U(RM) ] are needed. Quantum corrections coming mainly from {hvvibr } are easily introduced as 
multiplicative factors to (P.f-)a, Eqs. (1), (2); see [2]. 

3 In accustomed quantum chemistry, a P.E.-curve U(R) is treated with separate theories for 
long range attractions (van der Waals forces) and for short range forces (non-bonded repulsions and 
"chemical" valence-bond forces) with the well-known difficulty of patching the region, important 
though it is, in between. A full theory of a priori electronic P.E.-surfaces covering all of U(R) in the 
same way has been derived recently by the present writer. [It starts from U(R) = A Ec(R) + A Ean.ex . (R) 
with Ec, the energy containing all the specifically non-closed shell type correlation effects (E c = ER.F 
+ EtN x + EF) given rigorously by NCMET added to the MO-effects.] Hence AEc(R ) contains all of 
"chemical" and short range forces. The A Ean.~xt. (R) contains the remaining (hence closed shell-like) 
"all-external" correlations which reduce rigorously to the R -6 attractions at large R. For this theory 
and its recent applications by various workers to P.E.-curves U(RM). See [-3]. 
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We present here a new potential surface, the C-potential which includes all 
of the solvent effects. It is easily derived from the theory of solvent effects on 
isomerization or molecular association equilibria and rates, we have given 
previously [53. Solvents may be polar or non-polar. We also show that the C(RM) 
may be used in statistical mechanics just as if it were an ordinary P.E.-surface 
[in Eqs. (2), (8), etc.], i.e. over the coordinates R M = {Ri, R 2 . . . .  R,} of M only, 
even though the action of solvent is in it. 

The C-potential, for the atomic assembly M at an isomeric-conformational 
point RM, is 0 

C ( R M )  - -  U ( R M )  + Asolv.eff  (RM) (9) 
where A~olv.off (RM) is the "unitary" (x ~ -= 1) Helmholtz free energy (per molecule M) 
for placing the "molecule" M frozen at its fixed R M coordinates, into the solvent 
at T, V, i.e. of the process 

M(RM) (in vacuo) + solvent(l.)~-M(Ru) (in soln.) 
o (10) 

A A o - -  Asolv.eff (RM). 
0 As PA V~olv.eff~_O at P~_ l atm, we have also Q ~ o Asolv. eff = Vsolv. elf ( r ,  V).  

C(RM)_~ U(RM) + o Fsolv.eff (RM). (11) 
Then, [5] 

0 (12) F~olv.~ff (RM) = Fc(RM) + Fint(RM) + k T  In kT/P~ 
Vl 

Fc(RM) = free energy of making a cavity "prepared" [5] to accomodate M(RM); 
Fim(RM) = free energy of interaction of M(RM), then placed in the cavity, with 
the solvent around it; Po =- 1 atm., vl = molecular volume of solvent if) from its 
density 01(T, P) and molecular weight. 

Fc(RM) = ~c] ((o~-~ 3) x a(RM) 71(1 - -  W1M ) (13a) 

~3 lnyl 2 
WiM=(1--thRr~) ~ n  T + ~-  dM T (13b) 

where s t -1/3~ 
NYltq) 1RM ] 

r/tRM = tC] (q~ ~_Rlr~3) �9 (13C) 

Equation (13) includes some geometric properties of M (RM) and some proper- 
ties of the pure solvent O, the latter all obtained from simple macroscopic experi- 
mefital quantities pertinent to the pure liquids. The 

a(RM) = geometric surface area of the molecule M at its fixed conformation RM, 
V(RM) = geometric volume of M (RM) 

are easily obtained for example from space-filling models. 
For the solvent: 

71 = pure solvent ordinary surface tension at T, P, 
q)IRM = volume ratio V l / V ( R M )  ; V 1 obtained from density of pure solvent at T, P 

and its molecular weight. 

Further, e ,  - 1/3x ~:ltq~lRM ) is a dimensionless function giving the deviation of the energy 
(~  enthalpy) part of the microscopic surface tension at the molecular dimensions 
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R M from the macroscopic surface tension part [5]. The x] (~o) is a similar function 
in Eq. (13c), for the entropy part of ?. This writer has evaluated tc~(~o) and x](cp) 
from theory he developed on pure liquids (where q~ = 1) and dilute solutions 
which allows reliable curves to be obtained from thermodynamic data on pure 
liquids and simple solutions of varying q~. For each x(~p) a separate curve is ob- 
tained, one for non-polar solvents, one for polar solvents which include water. 

The ~c~(~p = 1) and x](~o = 1) values are tabulated for many common solvents 
in Ref. [7]. These can be used wherever M(RM) and solvent molecule sizes are 
roughly comparable. The full ~c(r curves will also be published. Note also that 
for all tc(q~), 

~(go)-~ 1 (14) 
as 

q ~ 0 ,  i.e. if V(RM)>>V1. 

In conformation studies, the M (RM) usually has some molecular side groups 
g like phenyl, alkyl, etc. which can orient in different ways. 

We have for the interaction I-5, 7] of a group g of M with the liquid, 

with 

g g 
Fv~aw(RM). = - f (cPlo, -[lo) A lgD1 DoBlo 

loll . 
Alo= ~ Io+I----~, #--- 1.35 

(15a) 

05b) 

I o resp. I1 = ionization potential of side group g resp. solven~ molecule Q. 

n ~ -  1 4 .  
Di = n~ + ~  - 3vi No-ai (15 c) 

hi, vi, ai = refractive index, molecular volume (VffNo), average polariability of 
i e {side group g or solvent O}; properties derived from pure liquids 
(solvent and a liquid of models of g). 

The f(~olo, -[10) is a dimensionless function of relative solvent-solute size and 
molecular "core sizes" given [5, 6] in terms of simple macroscopic handbook 
properties of the pure liquids involved. The f(cp, 7) results from integration of 
the (g-solvent molecule) interaction over the first discrete solvation layer, then 
over the rest of the solvent. 

In Eq. (15 a) we have 

2 7 ( 1 - x ) ( Q ' + Q " )  (16a) 
- f ( q ' l . ,  [lo) B l o  = 8 .  

x ,~ 0.436 for most solvents, polar, non-polar [-7]. 
The Q' is obtained analytically, 

6y3(~--t) 3 [-~-~--] + ~ + ~  - + ~ + ~  , (t6b) 
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where 

with 

3 

# = 7co + 0�9 ' 

1 ? 
z = - - - - l ,  t = ~ -  s t 

{7co+0.24 2 ( 3v l x/3 
r= t sN) 7-tw7 ' 

(3C 

f l~  1.15; 

1 
y= T(1 +)0; )~_-__ 0.85 ; 

v0, v 1 = average molecular volumes of liquid of g and of solvent (!), 
co = acentric factor (a macroscopic property of a pure liquid)�9 

(The t is with raverage between that of liquid of g and of solvent�9 

All these quantities (fl,)~, co are used in Ref. [6]. 
The Q" is an integral which is evaluated numerically�9 But it is a smaller part�9 

## t For most liquids we have found ( Q / Q  ) = o. 1. 
g g The above F~dw(RM) has resulted essentially from an integral of the type 

(the form of Ue(r) "effective intermolecular pair potential" given in Ref. [6] and 
approximations for g(2) also used in Ref. [6] gave rise to Q' and Q" above), 

e~aw =- Q 7 uelo(r) g(Z)(r; RM) 4~r2 dr . 
o 

Here ~ = number density of solvent O. 
We have now completely specified a Asolv,eff(RM). It has no adjustable param- 

eters; all quantities in it are either geometric or from quantum calculations for 
M (RM), and from simple macroscopic properties of pure liquids found in hand- 
books. 

We now show that everything that was done with U(RM) for the gas phase, 
can be done with C(RM) in the solution phase. 

Consider the total P.E.-surface U, of a collection of solvent molecules {s} 
together with the M (RM) in their midst: 

U t = U(RM) + UMs(RMs) + Uss(Rss) (17) 

RMS= distances from M(RM) to solvent molecules; 
solvent molecules. 

The free energy of the entire collection (per M) is: 

Rss-- distances between 

A = - k T  lnAMA~IQ (18a) 

with A~s ~ -- 2fs/Ns! and 2 S = (2toMsk T/h2) 3/2, and 

Q-= ,[ dz M ~ d z~  e -v*(RM'a~#kr . (18b) 
RM {s} 
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F o r  C(RM) to act  "as if it were a U(RM)" all we need to show is that, A, Eq. (18) 
equals 

A = - k T  lnAMQ c , (18 c) 

QC = .[ dzst e -c(~M)a'r �9 (18d) 
RM 

C o m p a r i n g  (18a, b) with (18c, d), we have  

e -  A~176 ~- AI~ I ~ dz(, I e - [vMs(RMs) + Uss(gss)l/kT (19) 
{sl 

which follows f rom Eqs. (17), (9) and (18a, b). Q.E.D. 
Remark :  The integral  in (19) is over  all solvent positions, R(~. But as {s} get 

close to M(RM), the UMS te rm becomes  hard-core  like repulsive mak ing  integrand 
zero. This is equivalent  to in tegrat ing only outside of  an M (RM) cavity. The r e s t  
of  UMs(RMs) in Eq. (19) leads to Aint(Rr~)(-~ Fint) in Eq. (12). The  Uss(Rss) in 
Eqs. (17)--(19) we take relative to the A~(1.), free energy of pure  solvent of  same 
n u m b e r  of  |  This affects Uss(Rss ) within a constant.  The Uss t e rm 
in the integral  thus leads to Ac(RM) ( ~  Fc(RM) ) of  Eq. (12). 

3. Use of the New Potential 

The conformat ions  and /o r  isomeric  equil ibria and  (~)-rates of  M(RM) in 
solut ion is now studied by adding F~162 f rom Eqs. (12)-(16) to a q u a n t u m  
mechanica l  [3] (or semi-empir ica l  [6]) gas phase  P.E.-surface U(RM). More  
accurately,  U(RM) is itself modif ied due to m a n y - a t o m  forces in the liquid, "effect 
of  m e d i u m  on van der Waals  forces" into an "effective U(RM)", Ue(RM) which is 
given in detail  in separa te  work  on that  par t icular  effect by this writer  [6]. [ In  
deriving Eqs. (13)--(16), Ue's were used in UMs and Uss. ] The full C(RM) is 

C(RM) ~- Ue(RM) + F~ �9 (20) 

A C(RM) " m a p "  is easily ob ta ined  for molecules in solution, e.g. cis, (4:), trans, 
etc. azobenzene  I73. One  looks for new minima,  etc. or calculates par t i t ion 
functions (P.f.)2, or  equil ibria K,  (or K *  oc rate) f rom it. 
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